Теория пределов – раздел математического анализа. Наряду с системами линейных уравнений и диффурами пределы доставляют всем студентам, изучающим математику, немало хлопот. Чтобы решить предел, порой приходится применять массу хитростей и выбирать из множества способов решения именно тот, который подойдет для конкретного примера.
В этой статье мы не поможем вам понять пределы своих возможностей или постичь пределы контроля, но постараемся ответить на вопрос: как понять пределы в высшей математике? Понимание приходит с опытом, поэтому заодно приведем несколько подробных примеров решения пределов с пояснениями.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Понятие предела в математике
Первый вопрос: что это вообще за предел и предел чего? Можно говорить о пределах числовых последовательностей и функций. Нас интересует понятие предела функции , так как именно с ними чаще всего сталкиваются студенты. Но сначала — самое общее определение предела:
Допустим, есть некоторая переменная величина. Если эта величина в процессе изменения неограниченно приближается к определенному числу a, то a – предел этой величины.
Для определенной в некотором интервале функции f(x)=y пределом называется такое число A, к которому стремится функция при х, стремящемся к определенной точке а. Точка а принадлежит интервалу, на котором определена функция.
Звучит громоздко, но записывается очень просто:
Lim — от английского limit — предел.
Существует также геометрическое объяснение определения предела, но здесь мы не будем лезть в теорию, так как нас больше интересует практическая, нежели теоретическая сторона вопроса. Когда мы говорим, что х стремится к какому-то значению, это значит, что переменная не принимает значение числа, но бесконечно близко к нему приближается.
Приведем конкретный пример. Задача — найти предел.
Чтобы решить такой пример, подставим значение x=3 в функцию. Получим:
Кстати, если Вас интересуют базовые операции над матрицами, читайте отдельную статью на эту тему.
В примерах х может стремиться к любому значению. Это может быть любое число или бесконечность. Вот пример, когда х стремится к бесконечности:
Интуитивно понятно, что чем больше число в знаменателе, тем меньшее значение будет принимать функция. Так, при неограниченном росте х значение 1/х будет уменьшаться и приближаться к нулю.
Как видим, чтобы решить предел, нужно просто подставить в функцию значение, к которому стремиться х. Однако это самый простой случай. Часто нахождение предела не так очевидно. В пределах встречаются неопределенности типа 0/0 или бесконечность/бесконечность. Что делать в таких случаях? Прибегать к хитростям!
Неопределенности в пределах
Неопределенность вида бесконечность/бесконечность
Пусть есть предел:
Если мы попробуем в функцию подставить бесконечность, то получим бесконечность как в числителе, так и в знаменателе. Вообще стоит сказать, что в разрешении таких неопределенностей есть определенный элемент искусства: нужно заметить, как можно преобразовать функцию таким образом, чтобы неопределенность ушла. В нашем случае разделим числитель и знаменатель на х в старшей степени. Что получится?
Из уже рассмотренного выше примера мы знаем, что члены, содержащие в знаменателе х, будут стремиться к нулю. Тогда решение предела:
Для раскрытия неопределенностей типа бесконечность/бесконечность делим числитель и знаменатель на х в высшей степени.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Еще один вид неопределенностей: 0/0
В таких случаях рекомендуется раскладывать числитель и знаменатель на множители. Но давайте посмотрим на конкретный пример. Нужно вычислить предел:
Как всегда, подстановка в функцию значения х=-1 дает 0 в числителе и знаменателе. Посмотрите чуть внимательнее и Вы заметите, что в числителе у нас квадратное уравнение. Найдем корни и запишем:
Сократим и получим:
Итак, если Вы сталкиваетесь с неопределенностью типа 0/0 – раскладывайте числитель и знаменатель на множители.
Чтобы Вам было проще решать примеры, приведем таблицу с пределами некоторых функций:
Правило Лопиталя в пределах
Еще один мощный способ, позволяющий устранить неопределенности обоих типов. В чем суть метода?
Если в пределе есть неопределенность, берем производную от числителя и знаменателя до тех пор, пока неопределенность не исчезнет.
Наглядно правило Лопиталя выглядит так:
Важный момент: предел, в котором вместо числителя и знаменателя стоят производные от числителя и знаменателя, должен существовать.
А теперь – реальный пример:
Налицо типичная неопределенность 0/0. Возьмем производные от числителя и знаменателя:
Вуаля, неопределенность устранена быстро и элегантно.
Надеемся, что Вы сможете с пользой применить эту информацию на практике и найти ответ на вопрос «как решать пределы в высшей математике». Если нужно вычислить предел последовательности или предел функции в точке, а времени на эту работу нет от слова «совсем», обратитесь в профессиональный студенческий сервис за быстрым и подробным решением.
Как решать пределы для чайников?
Для тех, кто хочет научиться находить пределы в данной статье мы расскажем об этом. Не будем углубляться в теорию, обычно её дают на лекциях преподаватели. Так что «скучная теория» должна быть у Вас законспектирована в тетрадках. Если этого нет, то почитать можно учебники взятые в библиотеке учебного заведения или на других интернет-ресурсах.
Итак, понятие предела достаточно важно в изучении курса высшей математики, особенно когда вы столкнетесь с интегральным исчислением и поймёте связь между пределом и интегралом. В текущем материале будут рассмотрены простые примеры, а также способы их решения.
Примеры решений
Пример 1 |
Вычислить а) $ \lim_{x \to 0} \frac{1}{x} $; б)$ \lim_{x \to \infty} \frac{1}{x} $ |
Решение |
а) $$ \lim \limits_{x \to 0} \frac{1}{x} = \infty $$ б)$$ \lim_{x \to \infty} \frac{1}{x} = 0 $$ Нам часто присылают эти пределы с просьбой помочь решить. Мы решили их выделить отдельным примером и пояснить, что данные пределы необходимо просто запомнить, как правило. Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ \text{a)} \lim \limits_{x \to 0} \frac{1}{x} = \infty \text{ б)}\lim \limits_{x \to \infty} \frac{1}{x} = 0 $$ |
Пример 2 |
$$ \lim \limits_{x \to 1} \frac{x^2 + 2x + 1}{x + 1} $$ |
Решение |
Внимание «чайникам» $$ \lim \limits_{x \to 1} \frac{x^2+2 \cdot x+1}{x+1}=\frac{1^2+2 \cdot 1+1}{1+1} = $$ $$ = \frac{4}{2}=2 $$ Как видим в итоге у нас вычислился предел, результатом стала двойка. Хорошо, когда так получается, но бывает так, что результатом становятся неопределенности. Попробуем разобраться с ними — это не так страшно как кажется |
Ответ |
$$ \lim \limits_{x \to 1} \frac{x^2 + 2x + 1}{x + 1} = 2 $$ |
Что делать с неопределенностью вида: $ \bigg [\frac{0}{0} \bigg ] $
Пример 3 |
Решить $ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} $ |
Решение |
Как всегда начинаем с подстановки значения $ x $ в выражение, стоящее под знаком предела. $$ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} = \frac{(-1)^2-1}{-1+1}=\frac{0}{0} $$ Что теперь дальше? Что же должно получиться в итоге? Так как это неопределенность, то это ещё не ответ и продолжаем вычисление. Так как в числители у нас многочлен, то разложим его на множители, помощью знакомой всем формулы ещё со школьной скамьи $$ a^2-b^2=(a-b)(a+b) $$. Вспомнили? Отлично! Теперь вперед и с песней применять её Получаем, что числитель $ x^2-1=(x-1)(x+1) $ Продолжаем решать учитывая вышеприведенное преобразование: $$ \lim \limits_{x \to -1}\frac{x^2-1}{x+1} = \lim \limits_{x \to -1}\frac{(x-1)(x+1)}{x+1} = $$ $$ = \lim \limits_{x \to -1}(x-1)=-1-1=-2 $$ |
Ответ |
$$ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} = -2 $$ |
Пример 4 |
$$ \lim \limits_{x \to 2}\frac{x^2-4}{x^2-4x+4} $$ |
Решение |
$$ \lim \limits_{x \to 2}\frac{x^2-4}{x^2-4x+4} = \frac{0}{0} = $$ $$ = \lim \limits_{x \to 2}\frac{(x-2)(x+2)}{(x-2)^2} = $$ $$ = \lim \limits_{x \to 2}\frac{x+2}{x-2} = \frac{2+2}{2-2} = \frac{4}{0} = \infty $$ Бесконечность получилась в результате — это следует из примера 1. Когда число делится на 0 под знаком предела, то получается бесконечность. |
Ответ |
$$ \lim \limits_{x \to 2}\frac{x^2-4}{x^2-4x+4} = \infty $$ |
Устремим предел в последних двух примерах к бесконечности и рассмотрим неопределенность: $ \bigg [\frac{\infty}{\infty} \bigg ] $
Пример 5 |
Вычислить $ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} $ |
Решение |
$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} = \frac{\infty}{\infty} $ Что же делать? Как быть? Не стоит паниковать, потому что невозможное — возможно. Нужно вынести за скобки и в числителе и в знаменателе икс, а потом его сократить. После этого предел попытаться вычислить. Пробуем… $$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} =\lim \limits_{x \to \infty} \frac{x^2(1-\frac{1}{x^2})}{x(1+\frac{1}{x})} = $$ $$ = \lim \limits_{x \to \infty} \frac{x(1-\frac{1}{x^2})}{(1+\frac{1}{x})} = $$ Используя определение из примера 2 и подставляя в место х бесконечность получаем: $$ = \frac{\infty(1-\frac{1}{\infty})}{(1+\frac{1}{\infty})} = \frac{\infty \cdot 1}{1+0} = \frac{\infty}{1} = \infty $$ |
Ответ |
$$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} = \infty $$ |
Пример 6 |
$$ \lim \limits_{x \to \infty}\frac{x^2-4}{x^2-4x+4} $$ |
Решение |
$$ \lim \limits_{x \to \infty}\frac{x^2-4}{x^2-4x+4} = \frac{\infty}{\infty} $$ Чтобы устранить такую неопределенность нужно вынести за скобки икс в числителе и в знаменателе, далее их сократить. В полученное выражение подставить икс равное бесконечности. Пробуем… $$ \lim \limits_{x \to \infty}\frac{x^2-4}{x^2-4x+4} = \frac{\infty}{\infty} = $$ $$ \lim \limits_{x \to \infty}\frac{x^2(1-\frac{4}{x^2})}{x^2(1-\frac{4}{x}+\frac{4}{x^2})} = $$ $$ \lim \limits_{x \to \infty}\frac{1-\frac{4}{x^2}}{1-\frac{4}{x}+\frac{4}{x^2}} = \frac{1}{1} = 1 $$ |
Ответ |
$$ \lim \limits_{x \to \infty}\frac{x^2-4}{x^2-4x+4} = 1 $$ |
Алгоритм вычисления лимитов
Итак, давайте кратко подведем итог разобранным примерам и составим алгоритм решения пределов:
- Подставить точку х в выражение, следующее после знака предела. Если получается определенное число, либо бесконечность, то предел решен полностью. В противном случае имеем неопределенность: «ноль делить на ноль» или «бесконечность делить на бесконечность» и переходим к следующим пунктам инструкции.
- Чтобы устранить неопределенность «ноль делить на ноль» нужно разложить числитель и знаменатель на множители. Сократить подобные. Подставить точку х в выражение, стоящее под знаком предела.
- Если неопределенность «бесконечность делить на бесконечность», тогда выносим и в числителе, и в знаменателе x наибольшей степени. Сокращаем иксы. Подставляем значения икса из под предела в оставшееся выражение.
В этой статье Вы ознакомились с основами решения пределов, часто используемых в курсе Математического анализа. Конечно же это не все типы задач, предлагающихся экзаменаторами, а только простейшие пределы. В следующих статьях поговорим о других типах заданий, но сперва необходимо усвоить этот урок, чтобы двигаться далее. Обсудим, что делать, если есть корни, степени, изучим бесконечно малые эквивалентные функции, замечательные пределы, правило Лопиталя.
Если у Вас не получается самостоятельно решить пределы, то не паникуйте. Мы всегда рады помочь!
Как определить предел функции: шаг за шагом руководство
Определение предела функции является одним из основных понятий математического анализа. Предел позволяет определить, как функция ведет себя при приближении аргумента к определенной точке или бесконечности. В данной статье будет представлено шаг за шагом руководство по определению предела функции.
Шаг 1: Понимание понятия предела
Предел функции можно представить как значение, к которому стремится функция при приближении аргумента к определенной точке. Математически предел функции f(x) при x, стремящемся к a, обозначается как:
.
Здесь x — аргумент функции, а a — точка, к которой стремится аргумент.
Шаг 2: Поиск предела функции
Существуют различные методы для нахождения предела функции. Вот некоторые из них:
Метод подстановки
Если функция задана в виде алгебраического выражения, можно попробовать подставить значение, к которому стремится аргумент, вместо аргумента и упростить выражение. Например, рассмотрим функцию f(x) = x^2. Чтобы найти предел функции при x, стремящемся к 2, можно подставить 2 вместо x:
f(2) = 2^2 = 4.
Таким образом, предел функции f(x) при x, стремящемся к 2, равен 4.
Метод факторизации
Если функция задана в виде рационального выражения (отношения двух алгебраических выражений), можно попробовать факторизовать числитель и знаменатель и сократить общие множители. Например, рассмотрим функцию f(x) = (x^2 — 4)/(x — 2). Чтобы найти предел функции при x, стремящемся к 2, можно сократить общий множитель (x — 2) в числителе и знаменателе:
lim (x -> 2) (x^2 — 4)/(x — 2) = lim (x -> 2) (x + 2) = 2 + 2 = 4.
Метод линеаризации
Если функция задана в виде корня или степенной функции, можно попробовать линеаризовать функцию, чтобы выразить ее в более простом виде. Например, рассмотрим функцию f(x) = √(x + 3) — 2. Чтобы найти предел функции при x, стремящемся к 1, можно линеаризовать функцию, заменив корень на степенную функцию:
f(x) = √(x + 3) — 2 = (x + 3)^0.5 — 2.
Теперь можно применить правило обратной подстановки:
lim (x -> 1) (x + 3)^0.5 — 2 = 1 + 3 — 2 = 2.
Шаг 3: Проверка и доказательство предела
После определения предела функции важно проверить его и доказать математическую корректность. Для этого можно использовать различные методы, такие как анализ графика функции, применение математических тождеств и правил дифференцирования и интегрирования.
Заключение
Находя предел функции, мы можем понять, как функция ведет себя в определенной точке или при стремлении аргумента к бесконечности. Шаги, описанные в этой статье, помогут вам определить предел функции и проверить его корректность.